
Bures fidelity for diagonalizable quadratic Hamiltonians in multi-mode systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 4925

(http://iopscience.iop.org/0305-4470/33/27/310)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/27
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 4925–4934. Printed in the UK PII: S0305-4470(00)12960-9

Bures fidelity for diagonalizable quadratic Hamiltonians in
multi-mode systems

Xiang-Bin Wang, L C Kwek and C H Oh
Department of Physics, Faculty of Science, National University of Singapore, Lower Kent Ridge,
Singapore 119260, Republic of Singapore

E-mail: scip7236@leonis.nus.edu.sg, scip6051@leonis.nus.edu.sg and
phyohch@nus.edu.sg

Received 30 March 2000

Abstract. Fidelity, as a measure of the distinguishability of states, is an important concept in
quantum mechanics, quantum optics and quantum information theory. Recently, the explicit
expressions of fidelity for single-mode squeezed states have been given. However, in experimental
studies, especially in non-degenerate parametric down-conversion, two photons are generated and
one studies two- or more-mode systems. In this paper we study the Bures fidelity for thermal
states of a diagonalizable quadratic Hamiltonian in multi-mode Fock space. To the best of our
knowledge, no one has yet attempted to give an explicit general formula of fidelity of mixed states
in multi-mode systems.

1. Introduction

A good quantum communication channel must be capable of transferring output quantum states
which are close to the input states. To quantify this idea of closeness, it is often necessary
to provide a measure to distinguish different quantum states. To do so, one introduces the
idea of fidelity. A fidelity of unity implies identical states whereas a fidelity of zero implies
orthogonal states. Indeed this idea of fidelity is not just confined to quantum communication.
It is also important in quantum optics, quantum computing and quantum teleportation [1–4].

For pure states, this measure of fidelity is generally computed using the Hilbert–Schmidt
norm. However, the Hilbert–Schmidt norm is not defined for mixed states. For mixed states,
a good indicator of fidelity is the Bures fidelity [1], which is defined as(

tr

√
ρ̂

1
2

1 ρ̂2ρ̂
1
2

1

)2

(1)

where ρ̂1 and ρ̂2 are density operators for two quantum mixed states. This fidelity not only
satisfies the properties required for a measure of distinguishability of quantum states; it also
reduces to the Hilbert–Schmidt fidelity for pure states.

Unlike the Hilbert–Schmidt norm, an explicit calculation of Bures fidelity is generally not
easy because of a term involving taking the square root of an operator. Recently, by using
a faithful representation, Twamley [5] calculated the Bures fidelity of a one-mode squeezed
thermal state system. The result is significant because it is the first explicit expression of fidelity
for mixed states in infinite-dimensional Fock space. Moreover, Twamley’s results [6–8] were
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subsequently re-derived using a group-theoretic approach and the matrix element of the square
root operator was computed with an additional displacement term.

A single-mode squeezed state system can be produced in a degenerate parametric amplifier.
However, in non-degenerate parametric down-conversion, one deals simultaneously with two
photons in conjugate modes [9,10]. The corresponding state can be generated from the vacuum
by a two-mode squeezed operator

Ŝ(ζ ) = eζ ∗a†
1a

†
2−ζa1a2 (2)

where ai and a
†
i are annihilation and creation operators and ζ is a squeezed parameter (ζ ∗

being the complex conjugate of ζ ). Indeed, experimentally two-mode squeezing can be
achieved through a homodyne or heterodyne apparatus [10]. It is therefore natural to extend and
investigate the multi-mode case and obtain a general formula for the fidelity of arbitrary multi-
mode squeezed systems. In this article, we provide a systematic approach for the calculation of
Bures fidelity for the multi-mode situation. In fact, the approach can be applied and modified
to all systems involving a diagonalizable quadratic Hamilton in arbitrary modes. In section 2,
we derive a general formula for a multi-mode system using a matrix representation method.
In section 3, we apply our approach to compute the Bures fidelity of some non-trivial but
instructive examples. In particular, we look at the one-dimensional generalized squeezed
state system and the two-dimensional coupled harmonic oscillator system. Both systems are
experimentally realizable. To our knowledge, nobody has so far provided an explicit formula
for computing Bures fidelity for multi-mode systems. Moreover, the method involved in our
generalization is also highly non-trivial. Before proceeding further, we define the following
notations in an n-dimensional Fock space: αT = (a

†
1, a

†
2, . . . , a

†
n; a1, a2, . . . , an) where a

†
i and

ai satisfy the commutation rules [ai, a
†
j ] = δij and αT is the transpose of α.

2. General formula for Bures multi-dimensional Fock space

Quadratic Hamiltonians occur ubiquitously in many physical systems. Without any loss of
generality, we can define a quadratic Hamiltonian as

Ĥ (N) = 1
2α

TNα (3)

where N is a 2n × 2n symmetric matrix and Ĥ is diagonalizable, namely we can find a
unitary operator Û so that Ĥ = Û (

∑n
i=1 ci(a

†
i ai + aia

†
i ))Û

† with ci > 0. To facilitate further
calculations, we also note that we can invoke the following formula [11]:

etĤ αe−tĤ = αetN�−1
. (4)

Writing

M(etĤ ) = etN�−1
(5)

where � =
(

0 I

−I 0

)
and I is the n × n unity matrix, we denote the matrix representation

of any operator Ŝ satisfying ŜαŜ−1 = αM(Ŝ) as M(Ŝ).
Consider the thermal states of the Hamiltonian Ĥi = Ĥ (Ni) = 1

2α
TNiα, i = 1, 2.

The corresponding density operators are ρ̂i = Z(βi)e−βiĤi . The Bures fidelity is defined
accordingly as

F = Z(β1)Z(β2)

(
tr

√
e− β1

2 Ĥ1 e−β2Ĥ2 e− β1
2 Ĥ1

)2

(6)
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where Z(βi) is a normalization factor. Specifically, Z(βi) = 1
tr e−βi Ĥi

. In our notation, the

matrix representation for the operator e− β1
2 Ĥ1 e−β2Ĥ2 e− β1

2 Ĥ1 is

M(e− β1
2 Ĥ1 e−β2Ĥ2 e− β1

2 Ĥ1) = e
β1
2 N1�eβ2N2�e

β1
2 N1�. (7)

In general, it is not easy to calculate the fidelity, F , directly as defined above. However, it is
possible to diagonalize the operator Ĥ1 with a unitary operator Û so that

Ĥ1 = 1
2 Û1

n∑
i=1

λi(a
†
i ai + aia

†
i )Û

†
1 . (8)

If we denote

�̂1 = −β1

2

n∑
i=1

λi(a
†
i ai + aia

†
i ) (9)

we have

M(Û
†
1 e−β1Ĥ1Û1) = M(e�̂1) = e−β1K1 (10)

where

K1 =
(

diag(λ1, λ2, . . . , λn) 0
0 diag(−λ1,−λ2, . . . ,−λn)

)
.

Moreover, we can denote e
1
2 �̂1Û

†
1 e−β2Ĥ2Û1e

1
2 �̂1 as �̂, so that the fidelity, F , becomes

F = Z(β1)Z(β2)

(
tr
√
Û1�̂Û

†
1

)2

= Z(β1)Z(β2)
(

tr
√
�̂
)2

. (11)

Since the matrix representation for Û1 is M(Û1), the matrix representation for �̂ is

M(e
1
2 �̂1)M−1(Û1)M(e−β2Ĥ2)M(Û

†
1 )M(e

1
2 �̂1). (12)

Moreover, considering equations (4) and (5), we see that the operator �̂′ has the same matrix
representation as the operator � with

�̂′ = exp[ 1
2α

T ln(M(e
1
2 �̂1)M(Û

†
1 )M(e−β2Ĥ2)M(Û1)M(e

1
2 �̂1))�α]. (13)

Applying Schur’s lemma, the operators �̂ and �̂′ therefore differ at most by a constant factor.
In the appendix, we have shown that this constant factor is unity. Thus �̂′ = �̂.

We perform the rest of the calculations using �̂′ for the fidelity, F , by noting that√
�̂′ = exp[ 1

4α
T ln(M(e

1
2 �̂1)M(Û

†
1 )M(e−β2Ĥ2)M(Û1)M(e

1
2 �̂1))�α] (14)

≡ exp

[
1
2α

T ln
√
M(e

1
2 �̂1)M(Û

†
1 )M(e−β2Ĥ2)M(Û1)M(e

1
2 �̂1)�α

]
. (15)

To take the trace of the operator,
√
�̂′, we can use the result in [12] which states that

tr e−βiĤi = (
√

| det(e−βiNi�−1 − I )|)−1, giving

tr
√
�̂′ = 1√∣∣∣∣det

(√
M(e

�̂1
2 )M(Û

†
1 )M(e−β2Ĥ2)M(Û1)M(e

�̂1
2 ) − I

)∣∣∣∣
. (16)

Since M(Û1)M(e
1
2 �̂1)M(Û

†
1 ) = M(e−β1Ĥ1) = e−β1N1�

−1
, we can express equation (16)

succinctly as

tr
√
�̂′ = 1√∣∣∣det

(√
e− β1

2 N1�−1
e−β2N2�−1 e− β1

2 N1�−1 − I
)∣∣∣

. (17)
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As a final step, we can then use equation (11) to obtain the formula for Bures fidelity as

F =

∣∣∣∣∣∣∣
det(e−β1N1�

−1 − I ) det(e−β2N2�
−1 − I )

det
(√

e− β1
2 N1�−1

e−β2N2�−1 e− β1
2 N1�−1 − I

)
∣∣∣∣∣∣∣

1
2

. (18)

Equation (18) therefore allows us to compute the Bures fidelity directly from the Hamiltonians
of any two thermal systems.

3. Applications

3.1. One-dimensional squeezed thermal states

It is illuminating to illustrate our approach with some instructive but non-trivial examples.
Our first example is the fidelity of the one-dimensional squeezed thermal states, investigated
earlier by Twamley [2]. Although the result for this example is well known now, the example
nevertheless serves as a useful check for our approach. For the one-dimensional squeezed
thermal states, one considers the density operator

ρi = Z(βi)Ŝi T̂i Ŝ
†
i ≡ e−βiĤi (19)

i = 1, 2, Si = exp[ 1
2 (ζ

∗
i a

†2 − ζia
2)] and Ti = exp[− βi

2 (a†a + aa†)]. Using our notation
described in the previous section, it is not difficult to see that

M(Ŝi) =
(

cosh ri −eiθ sinh ri
−e−iθ sinh ri cosh ri

)
M(Ŝ†) =

(
cosh ri eiθ sinh ri

e−iθ sinh ri cosh ri

)

and ri = |ζi |, θi = ζi/ri . Moreover, in this representation, the matrixM(T̂i) =
(

eβi 0
0 e−βi

)
is

diagonal. Using the Baker–Campbell–Hausdorff (BCH) relation, we can obtain the following
formula for ρ̂i :

ρ̂i = exp

[
1
2α

TM(Ŝi)

(
0 −βi

−βi 0

)
M(Ŝi)

T α

]
. (20)

From a quick comparison with the form of Ni in equation (3) and using the result in
equation (18), we see that

Ni = M(Ŝi)

(
0 −βi

−βi 0

)
M(Ŝi)

T .

Thus

e−βiNi�
−1 = M(ρ̂i) =

(
eβ

i cosh2 ri − e−βi sinh2 ri eiθi sinh 2ri sinh βi

−e−iθi sinh 2ri sinh βi e−βi cosh2 ri − eβi sinh2 ri

)
. (21)

A short calculation then gives

Z(βi) = det(e−βiNi�
−1 − I ) = (eβi − 1)(e−βi − 1) (22)

and

det

(√
e− β1

2 N1�−1
e−β2N2�−1 e− β1

2 N1�−1 − I

)
= (eβ3/2 − 1)(e−β3/2 − 1) (23)

where β3 must satisfy

2 cosh β3 = tr(e− β1
2 N1�

−1
e−β2N2�

−1
e− β1

2 N1�
−1
) = tr(M(ρ̂1)M(ρ̂2))

= (eβ1 cosh2 r1 − e−β1 sinh2 r1)(e
β2 cosh2 r2 − e−β2 sinh2 r2)

−2 cosh(i"θ) sinh β1 sinh β2 sinh 2r1 sinh 2r2

+(e−β1 cosh2 r1 − eβ1 sinh2 r1)(e
−β2 cosh2 r2 − eβ2 sinh2 r2) (24)



Bures fidelity 4929

which can be simplified further as

cosh β3 = cosh(β1 + β2)(cosh2 r1 cosh2 r2 + sinh2 r1 sinh2 r2)

− cosh(β2 − β1)(sinh2 r1 cosh2 r2 + cosh2 r1 sinh2 r2)

− cosh i"θ sinh β1 sinh β2 sinh 2r1 sinh 2r2 (25)

= cosh(β1 + β2)

[
cosh2(r1 + r2) sin2 "θ

2
+ cosh2(r2 − r1) cos2 "θ

2

]

− cosh(β2 − β1)

[
sinh2(r1 + r2) sin2 "θ

2
+ sinh2(r2 − r1) cos2 "θ

2

]
. (26)

Thus, we have

F = − (eβ1 − 1)(e−β1 − 1)(eβ2 − 1)(e−β2 − 1)

(eβ3/2 − 1)(e−β3/2 − 1)
(27)

or equivalently

F = 2 sinh β1

2 sinh β2

2

cosh β3

2 − 1
. (28)

The definition of θ in Twamley’s paper [5] differs from the definition of ϕ in [13]. Taking this
into consideration, we see that our results essentially reproduce Twamley’s expression [5].

3.2. Two-mode squeezed thermal states

Having considered the one-mode squeezed thermal states, it is natural to extend the previous
application to the two-mode case. As we have mentioned earlier, in experimental settings, it
is often more convenient to obtain two-mode squeezed thermal states using a non-degenerate
parametric amplifier. For the two-mode squeezed thermal states, the density operator is given
by

ρi = Z(βi)Ŝi T̂i Ŝ
†
i ≡ e−βiĤi (29)

where i = 1, 2, Si = exp[(ζ ∗
i a

†
1a

†
2 − ζia1a2)] and Ti = exp[− βi

2

∑2
j=1(a

†
j aj + aja

†
j )]. In this

case,

M(Ŝi) =
(

cosh riI −eiθ sinh riσ

−e−iθ sinh riσ cosh riI

)
and

M(Ŝ†) =
(

cosh riI eiθ sinh riσ

e−iθ sinh riσ cosh riI

)

where I =
(

1 0
0 1

)
and σ =

(
0 1
1 0

)
with ri = |ζi |, θi = ζi/ri . Moreover, we have

M(T̂i) =
(

eβi I 0
0 e−βi I

)
. Using the BCH relation, we obtain the following formula for ρi :

ρi = exp

[
1
2α

TM(Ŝi)

(
0 −βiI

−βiI 0

)
M(Ŝi)

T α

]
. (30)

By comparing with the definition of Ni in equation (18), we see that in this case

Ni = M(Ŝi)

(
0 −βiI

−βiI 0

)
M(Ŝi)

T .
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Finally, using equation (18), we obtain the Bures fidelity for two-mode squeezed thermal
states as

F =
(

2 sinh β1

2 sinh β2

2

cosh β3

2 − 1

)2

(31)

where β3 is the same as the definition given in equation (26). It is instructive to compare this
formula with the one-mode squeezed thermal state in equation (28). Despite the seeming
triviality in the results, this example highlights a physical property of Bures fidelity for
factorizable systems. For truly non-trivial, non-factorizable examples, we need to consider the
jump oscillators and the Liu–Tombesi oscillators.

3.3. Jump oscillators

As a non-trivial example, we consider a time dependent oscillator in which the frequency
encounters a jump at some finite time. Jump oscillators have been extensively investigated
in the past few years [14]. For pure states, the calculation of the projection between states
at different times allows us to determine the properties associated with time evolution. This
feature has been demonstrated, e.g. in [15], where Frank–Condon factors are computed. For
mixed states, the same problem is handled using density operators and one computes the
Bures fidelity between the density matrices at different times for time evolution. The jump
Hamiltonian for the two-dimensional harmonic oscillator system is

Ĥ1 = 1
2p

T p + 1
2x

T x (32)

at t = 0 and

Ĥ2 = 1
2p

T p + 1
2x

T x + λx1x2 (33)

at t > 0 where xT = (x1, x2), pT = (p1, p2). We can now calculate the Bures fidelity
between thermal states at t = 0 and at arbitrary t for the temperature kB

β
. We know that

the density operator takes the form ρ̂1 = ρ̂(t = 0) = Z(β)e−βH1 , Z(β) = (2 sinh β

2 )
2 and

ρ2 = ρ(t > 0) = e−iĤ1t ρ̂1eiĤ1t . We convert the operators into Fock space by using the
following relation:

(qT , pT ) = (a†, aT )
1√
2

(
I iI
I −iI

)
= (a†, aT )K (34)

where I is a two-dimensional unit matrix. With this conversion, we can use equation (18) to
obtain the result for(

tr

√
e− 1

2 βĤ1 e−iĤ2te−βĤ1 eiĤ2te− 1
2 βĤ1

)2

by defining the following matrices:

N1 = K

(
I 0
0 I

)
KT (35)

and

N2 = K




1 0 0 0
0 1 0 0
0 0 1 λ

0 0 λ 1


KT . (36)
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For convenience, we set β1 = β2 = β. The rest is a straightforward calculation using
equation (18). After some tedious but straightforward calculations, we finally obtain the
fidelity as

F = 4 sinh4 β

2

(cosh γ

2 − 1)2
(37)

where γ is defined as

cosh γ = 1

16(1 − λ2)

[
− 2λ2 + λ2(1 + λ) cos

(
2t

√
1 − λ

)
+ λ2(1 − λ) cos

(
2t

√
1 + λ

)

+ cosh 2β

(
16 − 14λ2 − λ2(1 + λ) cos

(
2t

√
1 − λ

)

−λ2(1 − λ) cos
(

2t
√

1 + λ
))]

. (38)

Despite the form of equation (37), the Bures fidelity in this example is non-trivial since
physically it is not possible to diagonalize both the Hamiltonians Ĥ1 and Ĥ2 simultaneously.
In other words, it is not easy to factorize the states exp(−βH1) and exp(−βH2) at the same
time. Moreover, the one-mode situation does not arise since physically it makes no sense to
set λ = 0, yielding F = 1.

3.4. Liu–Tombesi Hamiltonian

As a final application of our approach, we consider the thermal states of the following
Hamiltonian [16]:

Âi = iζia
†
1a

†
2 − iζ ∗

i a1a2 +
yi

2
(a

†
1a1 + a1a

†
1 + a

†
2a2 + a2a

†
2) (39)

where yi is a real number and yi > |ζi |, i = 1, 2. This Hamiltonian is related to the generalized
two-dimensional squeezed states. The corresponding density operator is

ρ̂i = Zie
−βÂi (40)

(i = 1, 2). To calculate the Bures fidelity between the density operators, ρ1 and ρ2, we need
to rewrite Ai as

Âi = 1
2α

T




0 iζi yi 0
iζi 0 0 yi

yi 0 0 −iζ ∗
i

0 yi −iζ ∗
i 0


α (41)

where αT = (a
†
1, a

†
2, a1, a2), giving

Ni =




0 iζi yi 0
iζi 0 0 yi

yi 0 0 −iζ ∗
i

0 yi −iζ ∗
i 0


 .

Computing directly using equation (18), we obtain an expression for Bures fidelity for the
density operators, ρ̂1 and ρ̂2, as

F = (eβ1

√
y2

1 −|ζ1|2 − 1)(e−β1

√
y2

1 −|ζ1|2 − 1)(eβ2

√
y2

2 −|ζ2|2 − 1)(e−β2

√
y2

2 −|ζ2|2 − 1)

4(cosh β ′
2 − 1)2

(42)
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which is equivalent to

F =
(

2 sinh β1χ1

2 sinh β2χ2

2

cosh β ′
2 − 1

)2

. (43)

After defining χ1 =
√
y2

1 − |ζ1|2 and χ2 =
√
y2

2 − |ζ2|2, we have the following formula for

β ′:

cosh β ′ = cosh β1χ1 cosh β2χ2 +
y1y2 − Re (ζ ∗

1 ζ2)

χ1χ2
sinh(β1χ1) sinh β2χ2. (44)

It is interesting to note that equation (43) is again a non-trivial example since the cross-terms
in the Hamiltonian in equation (39) involving the parameters ζi (i = 1, 2) cannot be set to
zero. Thus, it is not possible to diagonalize the two states exp(−βH1) and exp(−βH2) using
the same unitary matrices.

4. Discussion

In this paper, we have the Bures fidelities for multi-mode oscillators. A subtle point to note
from our computation is that, even if the final explicit expression for the Bures fidelities for
two-mode oscillators appear to be factorizable, the states may not be uncorrelated disentangled
or factorizable states. In other words, for the computation of the Bures fidelity of any two states
of a multi-mode oscillator, unless we can diagonalize the two states at the same time, it is not
clear if we have a factorizable situation. Moreover, while it is true that factorizable states leads
to factorizable fidelities, the converse is not true.

Finally, let us reiterate the main points. Bures fidelities for single-mode squeezed thermal
states have been extensively explored in the literature. However, experimentally, multi-mode
squeezed states are sometimes more easily reproduced, for instance in a non-degenerate
parametric homodyne amplifier. It is therefore natural to extend the investigation of the single-
mode case to the multi-mode case. Existing techniques using group-theoretic methods and
differential equations may not be easily adaptable for the multi-mode extension. Nevertheless,
we have shown in this paper that it is possible to compute the Bures fidelity for the multi-mode
case using the technique of exponential quadratic operators [7, 18].

Indeed, once the Hamiltonian for the system has been cast into the form in equation (3),
the Bures fidelity can be computed using the formula in equation (18). More specifically, one
first writes the density matrices ρ̂i as Z(βi)e− βi

2 αT
i Niα , identifies the matrices Ni and computes

the Bures fidelity using equation (18).
To illustrate the usefulness of our technique, we have applied the method to some

instructive examples and derived the explicit expression for the Bures fidelity in each case.
In particular, we have considered at least two non-trivial, non-factorizable cases: a two-
dimensional harmonic oscillator subjected to a jump Hamiltonian and a two-dimensional
squeezed oscillator. Finally, we note that it would be interesting to explore the Bures metrics
and the prior probability distributions and investigate the Fisher information metrics [17] for
these multi-mode systems.

Appendix

In this appendix, we show that the constant factor for the operators � and �′ is unity. To
determine this factor, we only need to compare the value of 〈0|�̂|0〉 and 〈0|�̂′|0〉. Suppose

M(�̂′) =
(

A′ B ′

D′ C ′

)
. (45)
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Using the method used in the appendix of [18],

〈0|�̂′|0〉 = det(C ′)−
1
2 . (46)

Furthermore, we have

〈0|�|0〉 = exp

[ n∑
i=0

− 1
2β1λi

]
〈0|Û †

1 e−β2Ĥ2Û1|0〉. (47)

We next consider Û †
1 α

T Û1 = αTM−1(Û1) and Û
†
1 αÛ1 = M−1T (Û1)α. Thus

Û
†
1 e−β2Ĥ2Û1 = e−β2α

T M−1(Û1)N2M
−1T (Û1)α. (48)

To simplify calculations, we can decompose the 2n × 2n matrices into n × n block matrices
by defining the matrix representations of the operator on the rhs of equation (48) as

e−β2M
−1(Û1)N2M

−1T (Û1)�
−1 =

(
A B

D C

)
(49)

so that we obtain

〈0|�|0〉 = exp

[
−β1

2

n∑
i=0

λi

]
det C− 1

2 . (50)

Since the matrix M is symplectic, we have

MT = �M−1�−1. (51)

Thus

e−β2M
−1(Û1)N2M

−1T (Û1)�
−1 = M−1(Û1)e

−β2N2�
−1
M(Û1). (52)

Comparing equations (12) and (52), we easily see the relation between matrices

(
A B

D C

)

and

(
A′ B ′

D′ C ′

)
where A, B, C, D and their primes are n × n matrices. Writing

(
A′ B ′

D′ C ′

)
= M(e

1
2 �̂1)

(
A B

D C

)
M(e

1
2 �̂1) (53)

we obtain

C ′=




e
λ1
2 β1 0 0 0
0 e

λ2
2 β1 0 0

0 0
. . . 0

0 0 0 e
λn
2 β1


C




e
λ1
2 β1 0 0 0
0 e

λ2
2 β1 0 0

0 0
. . . 0

0 0 0 e
λn
2 β1


 ≡ 0C ′0.

Finally, using equation (50), we obtain the following important result:

〈0|�̂|0〉 = exp

[
− β1

2

n∑
i=0

λi

]
det(0−1C ′0−1)−

1
2 = det(C ′)−

1
2 = 〈0|�̂′|0〉. (54)
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